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ABISS
• Extension to Storage subsystem
• Allow applications to prioritize their I/O
• Provides a guaranteed hard disk I/O

– Make sure the data is there when the application needs it
– Provide system-wide control
– Make better use of available performance

• Outline
– Introduction and Overview
– Implementation
– Measurements
– Future work and Conclusions
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• HDDs in CE equipment
• Real-time streams: hick-ups are not acceptable

– Multiple streams
• 'PC world' solution: Best Effort + performance overkill

– Large buffers in application (cost, latency)
– Performance (bandwidth, CPU) much higher than 

average need – over-dimension your system
– Cost, power consumption, ...

• Just-in-time: make system guarantee bitrate for RT streams
• Handle BE traffic in remaining time (make sure there is!)

Introduction
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Overall architecture
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implementation
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Reading block position
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Playout buffer
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Rate control
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Buffer size

• Application
– Read size
– 'jitter'

• Kernel
• Elevator + disk
• Read batching

Read size or work area

Kernel latency

IO latency

Application-dependent buffering

Operating system and hardware
dependent buffering

Read batching

Application jitter
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User-space daemon

• Keeps track of system-
wide use

• Decides whether 
bandwidth can be given

• e.g. Quotas
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elevator
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Scope of elevator and scheduler

ABISS ABISS anticipatory

ABISS daemon

test foo testtest
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API: request ABISS service on file
static struct abiss_attach_msg msg;

static struct abiss_sched_test_prm prm;

fd = open("name", O_RDONLY);

msg.header.type = abiss_attach;

prm.ra_bytes = app_buffer;

prm.fill_Bps = byterate;

msg.sched_prm = &prm;

...

if (ioctl(fd, ABISS_IOCTL, &msg) < 0)

    /* handle error */;

FILE  *abiss_fopen(const char *path, const char 
*mode, const int byterate, const int app_buffer)
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API: update playout point

static struct abiss_position_msg msg;

got = read(fd, buffer, BUFFER_SIZE);

msg.header.type = abiss_position;

msg.pos = 0;

msg.whence = SEEK_CUR;

ioctl(fd, ABISS_IOCTL, &msg);

abiss_fread(void *ptr, size_t size, size_t nmemb, 

FILE *fp)
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Measurement H/W setup
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Measurements, description

• Four RT streams; 
– 1 MB/s
– 64 kB read size
– 105 MB files
– Playout buffer 564 kB
– 20 pages batch size

• Measure time between 
read request and data 
retrieval

• Loop with BE file copy
– 175 MB file
– Read size 128 kB

• Different elevators:
– ABISS RT
– ABISS BE
– Anticipatory
– Deadline
– CFQ
– Noop
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Measurements, graphs
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BE performance

Elevator  BE reader performance [Mbytes/s]
One RT reader Four RT readers

ABISS RT, 10 pg batch 7.7 0.3
RT, 20 pg batch 8.0 2.5
RT, 40 pg batch 8.7 4.0
RT, 80 pg batch 9.4 5.8
RT, 160 pg batch 9.5 6.6
BE 7.7 1.5

Anticipatory 7.8 2.7
Deadline 7.9 1.8
CFQ 7.9 1.8
Noop 7.9 2.0
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Future work

• Ext3 filesystem
• Add RT writing

– Investigate buffering requirements
– Allocator

• Different schedulers, e.g. Power for portable players
• Investigate Asynchronous I/O with elevator priorities
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Conclusions
• ABISS framework

–  Allows for different, run-time switchable services
– 'test' scheduler implemented
– User-space daemon

• Evaluated performance 'test' scheduler
– Guarantee bandwidth without need for large app. buffers
– Favorable comparison to existing elevators

• http://abiss.sourceforge.net/
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Questions?
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system overview (detailed)
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opening a file
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reading a file
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preloading pages
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playout buffer
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elevator
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Credit & moving playout point
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