
1

The Active Block I/O Scheduling System
(ABISS)

Benno van den Brink
Philips Research, Eindhoven, The Netherlands

Werner Almesberger
Buenos Aires, Argentina

2

ABISS
• Extension to Storage subsystem
• Allow applications to prioritize their I/O
• Provides a guaranteed hard disk I/O

– Make sure the data is there when the application needs it
– Provide system-wide control
– Make better use of available performance

• Outline
– Introduction and Overview
– Implementation
– Measurements
– Future work and Conclusions

3

• HDDs in CE equipment
• Real-time streams: hick-ups are not acceptable

– Multiple streams
• 'PC world' solution: Best Effort + performance overkill

– Large buffers in application (cost, latency)
– Performance (bandwidth, CPU) much higher than

average need – over-dimension your system
– Cost, power consumption, ...

• Just-in-time: make system guarantee bitrate for RT streams
• Handle BE traffic in remaining time (make sure there is!)

Introduction

4

Overall architecture
ABISS daemon

ABISS

application

VFS

Device driver

Page/buffer cache

disk

Block I/O

application

VFS

Device driver

Page/buffer cache

disk

Block I/Oelevator

User space
Kernel

ABISS daemon

ABISS

application

VFS

Device driver

Page/buffer cache

disk

Block I/O

application

VFS

Device driver

Page/buffer cache

disk

Block I/Oelevator

5

implementation

system
File

driver

User-space
daemon

Configuration interface (ioctl)

Block device driver

ElevatorRequest queue(s)

system
File

driverScheduler API

Scheduler cores

Scheduler library

Page cache / Page IO

POSIX API (VFS)

Block device layer

Application

Allocator

6

scheduler
Application

Elevator Block IO

File system
driver and

VFS

Scheduler may
upgrade requests

Application moves
playout point Application reads data

Scheduler caches data location

Location map

Playout buffer

Scheduler
prefetches data

get_blockSc
he

du
le

r

Application

7

Reading block position

store on-disk location
of RT files

File system driver's
get_block

File block Disk block Length
?

ABISS redirects the file
system's get_block function

Location map (per file)

If file is mapped, use
location map

If file is not mapped, use original get_block

File system driver's
get_block

8

Playout buffer

Advances at the requested rate (or less)

Application playout point
Moves freely

Kernel playout point

Page is no longer used
Page is accessible and up to date
Page is being loaded
Pending read request

9

Rate control

Add credit

Credit
Yes

No

Credit limit

1 page

Ti
m

er
 e

xp
ire

sDone
No

reaches 1 page
Set timer when credit

Playoutpoints differ
by more than batch size

Yes
at rate r

credit >=

Load more ?

1 page ?

Reduce credit by one
page and move buffer

Reduce credit

Set timer

10

Buffer size

• Application
– Read size
– 'jitter'

• Kernel
• Elevator + disk
• Read batching

Read size or work area

Kernel latency

IO latency

Application-dependent buffering

Operating system and hardware
dependent buffering

Read batching

Application jitter

11

User-space daemon

• Keeps track of system-
wide use

• Decides whether
bandwidth can be given

• e.g. Quotas

ApplicationABISS
daemon

ABISS framework
Scheduler

Service
request

Cons.
check

Admission control

Set-up data structs
generate response

12

elevator

Areas (2, read and write)

Elevator

Sort

Back

Front
LIFO queue

FIFO queue

Sort queue

RB tree
by start sector

Cursor

Priority queues (8)

Footprint

Overlaps

3

2

1
Current

13

Scope of elevator and scheduler

ABISS ABISS anticipatory

ABISS daemon

test foo testtest

14

API: request ABISS service on file
static struct abiss_attach_msg msg;

static struct abiss_sched_test_prm prm;

fd = open("name", O_RDONLY);

msg.header.type = abiss_attach;

prm.ra_bytes = app_buffer;

prm.fill_Bps = byterate;

msg.sched_prm = &prm;

...

if (ioctl(fd, ABISS_IOCTL, &msg) < 0)

 /* handle error */;

FILE *abiss_fopen(const char *path, const char
*mode, const int byterate, const int app_buffer)

15

API: update playout point

static struct abiss_position_msg msg;

got = read(fd, buffer, BUFFER_SIZE);

msg.header.type = abiss_position;

msg.pos = 0;

msg.whence = SEEK_CUR;

ioctl(fd, ABISS_IOCTL, &msg);

abiss_fread(void *ptr, size_t size, size_t nmemb,

FILE *fp)

16

Measurement H/W setup
Single Voltage
Power Supply

CardBus
(PCMCIA)

Transmeta Crusoe
(800Mhz)

SDRAM

DDRAM

IEEE 1394
USB

IDE (2x)

CF Slot

Fast
Ethernet

Mini PCI
PCI

Graphics
Controller

Legacy I/O
(floppy,
printer,

Game etc)

Single Voltage
Power Supply

CardBus
(PCMCIA)

Transmeta Crusoe
(800Mhz)

SDRAM

DDRAM

IEEE 1394
USB

IDE (2x)

CF Slot

Fast
Ethernet

Mini PCI
PCI

Graphics
Controller

Legacy I/O
(floppy,
printer,

Game etc)

17

Measurements, description

• Four RT streams;
– 1 MB/s
– 64 kB read size
– 105 MB files
– Playout buffer 564 kB
– 20 pages batch size

• Measure time between
read request and data
retrieval

• Loop with BE file copy
– 175 MB file
– Read size 128 kB

• Different elevators:
– ABISS RT
– ABISS BE
– Anticipatory
– Deadline
– CFQ
– Noop

18

Measurements, graphs

19

BE performance

Elevator BE reader performance [Mbytes/s]
One RT reader Four RT readers

ABISS RT, 10 pg batch 7.7 0.3
RT, 20 pg batch 8.0 2.5
RT, 40 pg batch 8.7 4.0
RT, 80 pg batch 9.4 5.8
RT, 160 pg batch 9.5 6.6
BE 7.7 1.5

Anticipatory 7.8 2.7
Deadline 7.9 1.8
CFQ 7.9 1.8
Noop 7.9 2.0

20

Future work

• Ext3 filesystem
• Add RT writing

– Investigate buffering requirements
– Allocator

• Different schedulers, e.g. Power for portable players
• Investigate Asynchronous I/O with elevator priorities

21

Conclusions
• ABISS framework

– Allows for different, run-time switchable services
– 'test' scheduler implemented
– User-space daemon

• Evaluated performance 'test' scheduler
– Guarantee bandwidth without need for large app. buffers
– Favorable comparison to existing elevators

• http://abiss.sourceforge.net/

22

Questions?

23

ABISS

Application

API/VFS

Block Device Layer

Device Driver

File System Driver

Elevator

Allocator
Scheduler &

Hardware

User space

Kernel

24

scheduler

requests
Application-driven

Time-driven requests

Scheduler assigns priority

Elevator

Scheduler
Driver

File System Memory
Management

etc.

Page Cache & Block Device Layer

25

system overview (detailed)

Middleware

Application

POSIX API (VFS)

Configuration interface (ioctl)

Block device driver

Changed

Newetc.
MM,system

File

driver

Allocator API
Allocator cores
Allocator library

Scheduler API
Scheduler cores
Scheduler library

Page cache / Page IO

ElevatorRequest queue(s) Block device layer

26

opening a file

Configuration interface (ioctl)

Block device driver

system
File

driverScheduler API
Scheduler cores
Scheduler library

Page cache / Page IO

POSIX API (VFS)

Middleware

Block device layer

Application

Location map
Playout buffer

(library uses ASFS_IOCTL)

Scheduler initialized playout
buffer and asks file system
driver for file location

Open file, then request ASFS

27

reading a file
R

ea
di

ng
 a

 fi
le

 (r
ea

d)

Block device driver

ElevatorRequest queue(s)

Location map
Playout buffer

Page(s) in buffer cache

Not in cache

Elevator asks scheduler
for priority

system
File

driverScheduler API
Scheduler cores
Scheduler library

Page cache / Page IO

POSIX API (VFS)

Middleware

Block device layer

Application

File -> disk block translation

read() system call

28

preloading pages

Configuration interface (ioctl)

Block device driver

ElevatorRequest queue(s)

Location map
Playout buffer

Move playout point (through
middleware and ioctl)

Scheduler moves playout window,
according to rate (timer)

Scheduler requests new pages
entering playout buffer

Elevator asks scheduler
for priority

system
File

driverScheduler API
Scheduler cores
Scheduler library

Page cache / Page IO

POSIX API (VFS)

Middleware

Block device layer

Application

29

playout buffer

Page is loaded and locked in memory

Page is being loaded

Page will be loaded later

Playout buffer/window
Buffer for movement/delay/batching

Read-ahead pagesPlayout point
Work area

Page not used anymore

30

elevator

Priority 0 (highest, RT only)

Priority 1

Priority 7 (lowest, default)

Real
Time

B
es

t E
ffo

rt

Priority assigned
by scheduler

inside each priority
Elevator may reorder requests

Device
Driver

File System
Driver

31

Credit & moving playout point

?

Playout buffer

Enough credit ?
Playout point

Yes
No

playout point
Application moves

Drop first page, shift window

Page arrives (in page cache)

Page cache

Move immediately

upgrade existing request
Request new page orDelayed movement

