The Active Block I/O Scheduling System (ABISS)

Benno van den Brink Philips Research, Eindhoven, The Netherlands

Werner Almesberger Buenos Aires, Argentina

ABISS

- Extension to Storage subsystem
- Allow applications to prioritize their I/O
- Provides a guaranteed hard disk I/O
 - Make sure the data is there when the application needs it
 - Provide system-wide control
 - Make better use of available performance

Outline

- Introduction and Overview
- Implementation
- Measurements
- Future work and Conclusions

Introduction

- HDDs in CE equipment
- Real-time streams: hick-ups are not acceptable
 - Multiple streams
- 'PC world' solution: Best Effort + performance overkill
 - Large buffers in application (cost, latency)
 - Performance (bandwidth, CPU) much higher than average need – over-dimension your system
 - Cost, power consumption, ...
- Just-in-time: make system guarantee bitrate for RT streams
- Handle BE traffic in remaining time (make sure there is!)

Overall architecture

implementation

scheduler

Reading block position

store on-disk location of RT files

If file is not mapped, use original get_block

Playout buffer

Rate control

Buffer size

- Application
 - Read size
 - 'jitter'
- Kernel
- Elevator + disk
- Read batching

Operating system and hardware dependent buffering

User-space daemon

- Keeps track of systemwide use
- Decides whether bandwidth can be given
- e.g. Quotas

elevator

Scope of elevator and scheduler

API: request ABISS service on file

```
static struct abiss_attach_msg msg;
static struct abiss_sched_test_prm prm;
fd = open("name", O_RDONLY);
msg.header.type = abiss_attach;
prm.ra_bytes = app_buffer;
prm.fill_Bps = byterate;
msg.sched_prm = &prm;
if (ioctl(fd, ABISS_IOCTL, &msg) < 0)</pre>
    /* handle error */;
FILE *abiss_fopen(const char *path, const char
  *mode, const int byterate, const int app_buffer)
```

API: update playout point

```
static struct abiss_position_msg msg;
got = read(fd, buffer, BUFFER_SIZE);
msg.header.type = abiss_position;
msg.pos = 0;
msg.whence = SEEK_CUR;
ioctl(fd, ABISS_IOCTL, &msg);
abiss_fread(void *ptr, size_t size, size_t nmemb,
   FILE *fp)
```

Measurement H/W setup

Measurements, description

- Four RT streams;
 - 1 MB/s
 - 64 kB read size
 - 105 MB files
 - Playout buffer 564 kB
 - 20 pages batch size

 Measure time between read request and data retrieval

- Loop with BE file copy
 - 175 MB file
 - Read size 128 kB
- Different elevators:
 - ABISS RT
 - ABISS BE
 - Anticipatory
 - Deadline
 - CFQ
 - Noop

Measurements, graphs

BE performance

Elevator		BE reader performance [Mbytes/s]	
		One RT reader	Four RT readers
ABISS	RT, 10 pg batch	7.7	0.3
	RT, 20 pg batch	8.0	2.5
	RT, 40 pg batch	8.7	4.0
	RT, 80 pg batch	9.4	5.8
	RT, 160 pg batch	9.5	6.6
	BE	7.7	1.5
Anticipatory		7.8	2.7
Deadline		7.9	1.8
CFQ		7.9	1.8
Noop		7.9	2.0

Future work

- Ext3 filesystem
- Add RT writing
 - Investigate buffering requirements
 - Allocator
- Different schedulers, e.g. Power for portable players
- Investigate Asynchronous I/O with elevator priorities

Conclusions

- ABISS framework
 - Allows for different, run-time switchable services
 - test' scheduler implemented
 - User-space daemon
- Evaluated performance 'test' scheduler
 - Guarantee bandwidth without need for large app. buffers
 - Favorable comparison to existing elevators
- http://abiss.sourceforge.net/

Questions?

ABISS

scheduler

system overview (detailed)

playout buffer

- Page is loaded and locked in memory
- Page is being loaded
- Page will be loaded later
- Page not used anymore

elevator

Credit & moving playout point

